Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(22): 36236-36244, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-38017778

RESUMO

Optical microresonators offer a highly-attractive new platform for the generation of optical frequency combs. Recently, several groups have been able to demonstrate the generation of dual-frequency combs in a single microresonator driven by two optical pumps. This opens the possibility for microresonator-based dual-comb systems suitable for measurement applications such as spectroscopy, ranging and imaging. Key to the performance of these systems are the parameters of the radio-frequency comb spectrum that arises from the interference of the two optical combs. In this work, we present a simple mechanism to enable the discrete fine-tuning of these parameters by driving the two optical combs with optical pumps with different azimuthal mode numbers. The mechanism consists of tuning the difference in azimuthal mode number between the two pumps by selection of the pumps' frequencies. We are able to implement this technique when the two counter-propagating pumps are set to drive resonances of the same spatial mode family, as well as different mode families. In each case, we experimentally observe ∼1 MHz of discrete tunability in the line-spacing of the radio-frequency comb as the frequency offset between the two pumps is scanned between 0 to 80 free-spectral-ranges.

2.
Opt Express ; 31(4): 5475-5482, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36823826

RESUMO

Parametric oscillation in Kerr microresonators provides an attractive pathway for the generation of new optical frequencies in a low-power, small-footprint device. The frequency shift of the newly generated parametric sidebands is set by the phasematching of the underlying four-wave-mixing process, with the generation of large frequency shift sidebands typically placing exacting requirements on a resonator's dispersion profile. In practice, this limits the range of viable pump wavelengths, and ultimately the range of output frequencies. In this paper, we consider a multimode four-wave-mixing process in which the pump and sidebands propagate in different mode families of the resonator. We show that this multimode configuration yields a considerable relaxation in the phasematching requirements needed to generate large frequency shift parametric sidebands, allowing their formation even in resonators with strong second-order dispersion. Experimentally we use a magnesium-fluoride micro-disk resonator to demonstrate this multimode phasematching. By accessing different pump and sideband modes, four distinct multimode parametric processes generating frequency shifts between 118 and 216 THz are reported. The resulting separation between the two sidebands is almost three octaves.

3.
Opt Lett ; 47(23): 6053-6056, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37219170

RESUMO

In this work, we analyze the first whispering gallery mode resonator (WGMR) made from monocrystalline yttrium lithium fluoride (YLF). The disc-shaped resonator is fabricated using single-point diamond turning and exhibits a high intrinsic quality factor (Q) of 8×108. Moreover, we employ a novel, to the best of our knowledge, method based on microscopic imaging of Newton's rings through the back of a trapezoidal prism. This method can be used to evanescently couple light into a WGMR and monitor the separation between the cavity and the coupling prism. Accurately calibrating the distance between a coupling prism and a WGMR is desirable as it can be used to improve experimental control and conditions, i.e., accurate coupler gap calibration can aid in tuning into desired coupling regimes and can be used to avoid potential damage caused by collisions between the coupling prism and the WGMR. Here, we use two different trapezoidal prisms together with the high-Q YLF WGMR to demonstrate and discuss this method.

4.
Opt Lett ; 46(10): 2477-2480, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33988614

RESUMO

Small perturbations in the dielectric environment around resonant dielectric structures usually lead to a frequency shift of the resonator modes directly proportional to the polarizability of the perturbation. Here, we report experimental observations of strong frequency shifts that can oppose and even exceed the contribution of the perturbations' polarizability. We show in particular how the mode frequencies of a lithium niobate whispering-gallery-mode resonator are shifted by planar substrates-of refractive indices ranging from 1.50 to 4.22-contacting the resonator rim. Both blue- and redshifts are observed, as well as an increase in mode linewidth, when substrates are moved into the evanescent field of the whispering gallery mode. We compare the experimental results to a theoretical model by Foreman et al. [J. Opt. Soc. Am. B33, 2177 (2016)JOBPDE0740-322410.1364/JOSAB.33.002177] and provide an additional intuitive explanation based on the Goos-Hänchen shift for the optical domain, with applications to dielectric structures ranging from meta-surfaces to photonic crystal cavities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...